2-INPUT VIDEO SUPERIMPOSER

■ GENERAL DESCRIPTION

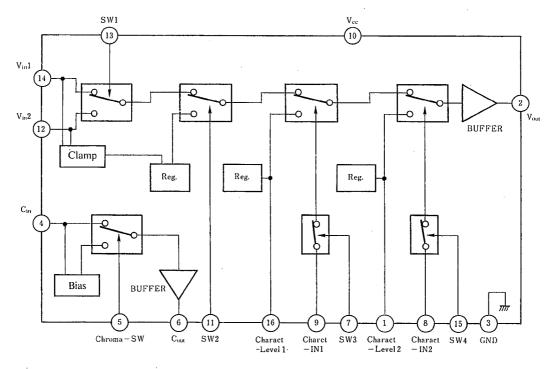
NJM 2262 is a 2input video superimposer, inculuding video switch circuit that consist of four Y signal circuit and one C signal circuit.

Its impose voltage is set up white level and black level but You can fix its impose voltage.

SHARRAN

■ PACKAGE OUTLINE

NJM2262M


■ FEATURES

- Operating Voltage (4.5V∼5.5V)
- Low Operating Current : 5V movement (Icc=8mA)
- Internal Video SW
- Internal Clamp circuit and Bias circuit
- Impose voltage is step up white level and black level but you can fix is impose voltage.
- Package Outline DMP16
- Bipolar Technology

APPLICATION

• VTR Camera, VTR, TV etc.

■ BLOCK DIAGRAM

NJM2262M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	+7	V
Power Dissipation	Po	300	mW
Operating Temperature Range	Торг	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^+=5V, V_{in}=1V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	No signal	_	8.0	12.0	mA
Y Voltage Gain	Gvy	1MHz, 1V _{p-p} Sine Wave	-0.7	-0.2	+0.3	dB
C Voltage Gain	Gve	IMHz, IV _{p-p} Sine Wave	-0.8	-0.3	+0.2	dB
Y Frequency Characteristics	Gfy	Vo(7MHz)/Vo(1MHz)	-1.0	0	+1.0	dB
C Frequency Characteristics	Gie	Vo(7MHz)/Vo(1MHz)	-1.0	0	+1.0	dB
Differential Gain	DG	Stea Step		<u> </u>	3.0	%
Differential Phase	DP	Stea Step		<u> </u>	3.0	deg
Output offset Voltage	Vos		-15.0	0	+15.0	mV
Y Cross-Talk	CTy	4.43MHz Vo/vi	—	-60.0	-50.0	dB
C-Y Cross-Talk	CTcy	4.43MHz Vo/Vi		-60.0	-50.0	dB
Y-C Cross-Talk	CTyc	4.43MHz Vo/Vi		-60.0	-50.0	dB
Input Impedance 1	Rit	V _{in1} , V _{in2}	10.0	_	l —	kΩ
Input Impedance 2	R _{i2}	Cin		15.0	_	kΩ
Output Impedance	Ro			20.0	_	ΩV
Charact-LEVEL 1	V _{M1}		607	643	679	mV
Charact-LEVEL 2	V _{M2}		607	643	679	mV
Y Gate Level	V _{gy}	From Crump Level	0	35.7	71.4	mV
C Gate Level	V_{GC}	From Bias Level	-10.0	0	10.0]
Threshold Voltage 1	Vth1	SWI (ON LEVEL)	2.5	-	<u> </u>	V
·	}	(OFF LEVEL)	-	-	0.8	v
Threshold Voltage 2	V_{1h2}	SW2 (ON LEVEL)	2.5			V
		(OFF LEVEL)	-	—	0.8	V
Threshold Voltage 3	V _{th3}	SW3 (ON LEVEL)	3.0	<u> </u>	-	V
		(OFF LEVEL)	-	_	1.0	V
Threshold Voltage 4	V _{th4}	SW4 (ON LEVEL)	3.0	—		V
		(OFF LEVEL)	_	l —	1.0	v
Threshold Voltage 5	V _{th5}	SW5 (ON LEVEL)	2.5	<u> </u>	_	v
	,	(OFF LEVEL)	_	_	0.8	v
Threshold Voltage 6	V _{th6}	SW6 (ON LEVEL)	2.5		_	v
		(OFF LEVEL)	-	_	0.8	v
Threshold Voltage 7	V _{th7}	SW7 (ON LEVEL)	2.5	_		V
		(OFF LEVEL)			0.8	v
	1	l .	1	1	1	1

(note 1) Next two cross-talk (One side 0Ω termination)

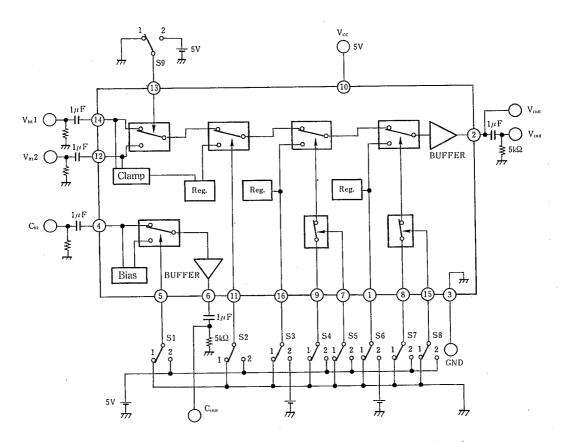
 $\textcircled{1} \ V_{in1} {\rightarrow} V_{in2} \qquad \textcircled{2} \ V_{in2} {\rightarrow} V_{in1}$

(note 2) Next two cross-talk (One side 0Ω termination)

① $C_{in} \rightarrow V_{in1}$

 \bigcirc $C_{in} \rightarrow V_{in2}$

(note 3) Next two cross-talk (One side 0Ω termination)


① V_{int}→C_{in}

 $\textcircled{2} V_{in2} \rightarrow C_{in}$

(note 4) White Level

(note 5) Black Level

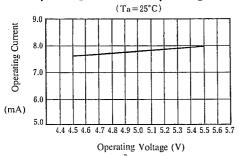
■ TEST CIRCUIT

This IC requires $1M\,\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

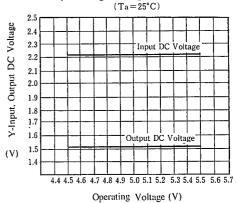
■ TERMINAL FUNCTION

PIN NO.	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
1	Charact-Level 2	Input terminal of the DC Voltage or the signal in the super imposing condition. In opening condition, presetted in voltage level of 90IRE (White Level) at 1 V _{P-P} video signal.	4.5k 15.5k
2	Vout	Output terminal of Y signal	V _{cc} 600μΛ
3	GND	GND	
4	Cin	Input terminal (Bias Input) of gate switch for C signal.	100/c A 15k 500
5	Chroma-SW	Control Terminal of C-SW. Lo Signal Output Hi Bias Voltage Output	5 20k 8k

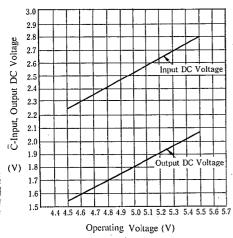
■ TERMINAL FUNCTION


PIN NO.	PIN NAME	FUNCTION;	EQUIVALENT CIRCUIT
6	Совт	Output terminal of C-SW.	600/e A 6
7	SW 3	ON/OFF control terminal of character signal inputted from 9 pin Lo Charactor Signal Through Hi Charactor Signal OFF	7 20k 8k \$
8	Charact-IN 2	Terminal to input character signal for super impose.	8 20k 8 8k \$
9	Charact-IN 1	Terminal to input character signal for super impose.	9 20k 8k
10	Vec	V _{cc} =5V	

■ TERMINAL FUNCTION

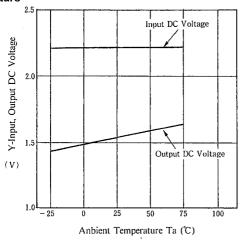

PIN NO.	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
11	SW 2	Terminal to input character signal for super impose. Voltage for impose is presetted internally, at the voltage level 51RE (Black Level) with IV _{P-P} video signal.	20k 8k
12	Vin 2	Input terminal of Y signal(1V _{P-P}). Clamp circuit is internalized and clamp voltage is about 2.15V. (Oscillation might occur when higher impedance source. So, please control source impedance under 3.5Ω.)	500
13	SW 1	Contorol terminal for input signal switch of Y signal. Output Lo Vin 1 Hi Vin 2	20k 8k
14	Vin 1	Input terminal of Y signal (1V _{P-P}). Clamp circuit is internalized and clamp voltage is about 2.15V. (Oscillation migh occire when higher impedance source. So, please contorol source impedance under 3.5kΩ.)	500
15	SW 4	ON/OFF control terminal of charactor signal inputted from 8 pin. Lo Charactor Through Hi Charactor Signal OFF	15 20k 8k
16	Charact-Level 1		4.5k 15.5k

■ TYPICAL CHARACTERISTICS

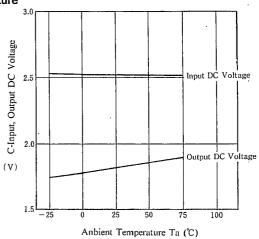

Operating Current vs. Operating Voltage

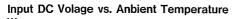
Y-Input, Output DC Voltage vs. Operating Voltage

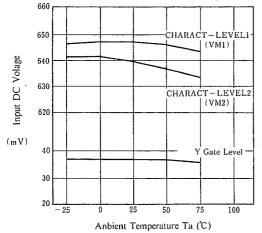
C-Input, Output DC Voltage vs. Operating Voltage

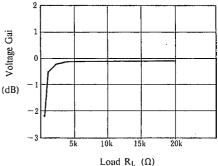


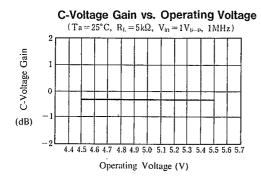
Y-Voltage Gain vs. Operating Voltage

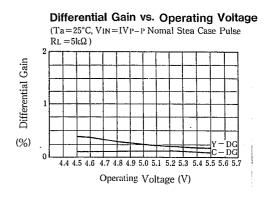


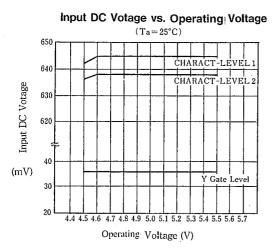

■ TYPICAL CHARACTERISTICS

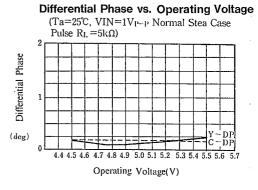

ture

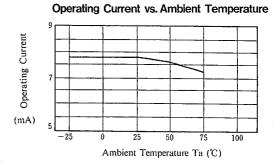

Y-Input, Output DC Voltage vs. Anbient Tempera- - C-Input, Output DC Voltage vs. Anbient Temperature






Voltage Gain vs. Load




■ TYPICAL CHARACTERISTICS

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.